1
AT
% ¢
by, o -
yry 4 cects

Software Engineering Challenges
for Parallel Processing Systems

Lt Col Marcus W Hervey, USAF
AFIT/CIP
marcus.hervey@us.af.mil

Disclaimer

"The views expressed in this presentation are
those of the author and do not reflect the
official policy or position of the United States
Air Force, Department of Defense, or the U.S.
Government."

Outline

Motivation

A Brief Overview of Parallel Computing
Parallel Programming Challenges

The Need for Parallel Software Engineering
Research Directions

Summary

From Moore’s to Cores

Before sequential programs were made faster by running on
higher frequency computers without changes to the code

Chip manufacturers ran into problem with continuing down
this path

— Heat generation

— Power consumption

Redefined metric from processor speed to performance (# of
processors/cores)

Today optimum performance will require significant code
changes with the knowledge to develop correct and efficient
parallel programs

What’s All the Fuss About?

Execution Time Execution Time
625 ~ = = =] 256 —1% {} {} {1 e
128
125 64
32
25 —#—Sequential 16 == Sequential
OpenMP 8 o OpenMP
5 4
2
1 ' ' ' ' 1 T T T T
1 2 4 8 16 1 2 4 8 16
Matrix Multiply using OpenMP Jacobi using OpenMP

Parallel Processing:

« Solves problems faster or solves larger problems
 More complex -- Must match best algorithm with best
programming model and best architecture

Applications of Parallel Computing

* Embedded Systems
— Cell phones, Automobiles, PDAs

* Gaming Systems
— Playstation 3, Xbox 360
* Desktop/Laptops

— Dual-core/Quad-core

* Supercomputing (HPC/HPTC/HEC)
— www.top500.o0rg

Parallel Processing is mainstream!

Military Applications of
Parallel Computing

Supercomputing

Automated
Information
Systems

Gaming,
Training,

Embedded

_ . Systems
Simulation

The New Frontier

e Standard Architectures
— Beowulf Clusters / Grid Computing
— Dual-core/Quad-core — Intel/AMD
— Intel’s 80-core machine

* Non-standard Architectures
— 72-core machine — Sicortex
— FPGAs - Field-programmable gate array
— GPGPUs — Nvidia, AMD (ATI)
— Cell Processor — IBM — Playstation 3
— Accelerators - Clearspeed

Parallel Processing Architectures

Distributed Memory

Processor

Processor Memory Processor

Shared Memory

Memory Memory

Interconnection Processor | Processor | Processor | Processor

Network

Processor Processor

Processor
Memory Memory

Memory

...there is also Distributed Shared Memory

Message Passing Model

Communicates by sending/receiving messages

Process 1 Process 2
Send > Receive
Receive € Send

OpenMPI
MPICH

Designed for Distributed Memory Machines

OpenMPI Code Example

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv) {
char buff[20]; int myrank;
MPI_Status ;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
strcpy (buff, “Hello World!\n”);
MPI_Send(buff,20,MPI_CHAR,1,99,MPI_COMM_WORLD);
}

else {
MPI_Recv(buff,20,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);
printf(“received :%s:\n”, buff);
}
MPI_Finalize();
return O;

}

Shared-Memory Model

Communicates by accessing shared memory

Processor Memory Processor

Write data Read data

e OpenMP programming model
 POSIX Theads (Pthreads)
e Unified Parallel C

OpenMP Fork-join Pattern

Mas:ter
Thread

OpenMP Code Example

Without OpenMP With OpenMP
#include<stdio.h> #include <stdio.h>
#include <omp.h>
int main(void) int main(void)
{ {
printf(“Hello World!\n); int threadid = 0;
return O; #pragma omp parallel private(threadid)
} {
threadid = omp_get_thread_num();

printf(“%d : Hello World!\n”, threadid);
}

return O;

}

* Implemented as C/C++/Fortran language extensions

* Composed of compiler directives, user level runtime routines, environment variables
* Facilitates incremental parallelism

Pthreads Code Example

#include <stdio.h>
#include <pthread.h>
define NUM_THREADS 5

void *HelloWorld(void *threadid) {
printf(“%d : Hello World!\n”, threadid);
pthread_exit(NULL);

}

int main() {
pthread_t threadsi NUM_THREADS];
Int rc, t;
for (1=0; i<NUM_THREADS; 1++) {
printf(“%d : Hello World!\n™, 1);
rc = pthread_create(&threads[i], NULL, HelloWorld, (void *) t);
if (rc) {
printf(“ERROR; return code from pthread_create() is %d\n”, rc);
exit (-1);
}
}
pthread_exit(NULL);

}

UPC Code Example

Without UPC With UPC
#include<stdio.h> #include <stdio.h>
#include <upc.h>
int main(void) int main(int argc, char *argv|[])
{ {
printf(“Hello World'\n”); int 1;
return O;
} for(1i=0; i<THREADS; 1++)
{
if ==MYTHREAD)
{
printf(“%d : Hello World'\n”, MY THREAD);
}
return O;
}

Major Parallel Programming Challenges

Parallel Thinking/Design
— ldentifying the parallelism
— Parallel algorithm development

Correctness
— Characterizing parallel programming bugs
— Finding and removing parallel software defects

Optimizing Performance
— Maximizing speedup and efficiency
Managing software team dynamics

— Complex problems require large, dispersed, multi-disciplinary
teams

A Different Species of Bugs

Data Races
— When an interleaving of threads results in an
undesired computation result

Deadlock
— When two or more threads stop and wait for each other
Priority Inversion

— A higher priority thread is preempted by a lower priority thread
Livelock

— When two or more threads continue to execute, but make no
progress toward the ultimate goal

Starvation
— When some thread gets deferred forever

Data Race Example

Without Synchronization

Thread A Thread B

|

read count =2

J

count+2 =4

J

write count = 4

read count =4

count+2 =6

write count = 6

J

Data Race

With Synchronization
Thread A Thread B

|

read count =2

J

count+2 =4 read count = 2
write count = 4 count+2 =4

J

write count = 4

This type of error caused by Therac-25 radiation therapy machine resulted in 5 deaths

Deadlock

MPI PROCESS 1 PROCESS 2
Example Send (Processor 2) Send(Processor 1)
Receive(Processor 2) Receive(Processor 1)
Waiting on Process 2 Waiting on Process 1
to receive message to receive message
worker () {
#pragma omp barrier
}
main () {
OpenMP #pragma omp parallel sections
Example {

#pragma omp section

worker();

}
}

Synchronization Errors

Not Enough Too Much

Data Races Deadlock

* Missing or inappropriately applying synchronization
can cause data races

* Applying too much synchronization can cause
deadlock

Priority Inversion

 Lower priority thread preempts higher priority thread
— Low-priority thread enters critical section.

— High-priority thread wants to enter critical section, but
can’t enter until low-priority thread is complete.

— Medium-thread pre-empts higher priority thread
e This type of error caused Mars Pathfinder failure

O

D> O

Parallel Performance

* Execution time
— Time when the last processor finishes its work

— Amdahl’s Law — Sequential portions of code limit speedup
* Most parallel codes have sequential portion(s)

 Speedup
— (1 CPU execution time)/ (P CPUs execution time)
— Must compare to the best sequential algorithm
 Efficiency
— Speedup/P
— 100% efficiency is hardly ever possible

Parallel Performance Metrics

Execution Time

256 —» o I} o 5
64
Performance 16 ——Sequential
of Jacobi 4 OpenMP
using OpenMP 1
9+pP 1 2 4 8 16
Speedup Efficiency
64 4

2 M === 0penMP

== 0OpenMP
== Expected Expected
1 4 T . T . T . T ._\

1 2 4 8 16

For optimum performance, parallel developers need to have
an understanding of the application and the architecture

Parallel Software Quality Goals

Correctness, Robustness and Reliability

Performance
— Speedup, Efficiency, Scalability, Load Balance
Predictability — Cost, Schedule, Performance

— Managing complexity of harder problems with
more non-standard architectures and more
diverse teams

Maintainable

Lack of Parallel Software

of 2

il on C tiri- Swudy R Is Lack of Software http: e ww_hpowire. comhpc/ 6 1 2904 html
Creisic
) Ol o e L
St — s raeC [
The L For and G the of High J Apeil 7,
Home Page | Free Subscription | Advertising | A bout HPCwine
Software:

Council on Competitiveness Study Reveals ILack of Software

The Council on Competitiveness, anational organization of busine ss, academic and labor executives, has released the
second pert of a study that reveals that the lack of scalable application software is pr i meuTy © s from
using high performance computing (HPC) more aggressively for c titive ad Part B of the Council on
Competitivenes ss Study of ISVs Serving the High Performance Computing Market concludes that major U.S. industries
often cannot get the application software they need to drive innovation and global competitiveness. Both parns of the
pPioneering study were sponsored by the Defense Advanced Research Projects A gency (IDARPA) and conduced by
leading market research firma TIDC.

Part A of this study reve aled thar the inde pendent software vendor (ISV) busine ss model for developing advanced
application software for HPC has nearly evaporated, and that ISVs must focus most of their software development of the
broader commercial market.

“This study demonstrates that the lack of production guality HPC application software is a soft spot in the

compe titiveness amor of the U.S." said Council on Compe titiveness Pre sident Deborah L. Wince-Smith. "“When U.S.
industries can not obtain the application software they want and need, innovation is stymied and competitivens ss is
compromised. Fortunately, we are finding that most ISVs and a substantial portion of ULS. businesse s are willing to
partper with each other, as well as universities and national laboratorse s to speed progress in sxkiressing this challenge. *

"Part B: End User Perspective s” directly surveyed a select group of highly experienced HPC users in U.S. businesses,
representing a wide range of industrie s, from defense toentertainment to consumer products. The study revealed the
U_S. business requireaments for advanced HPC application software, and the financial and techmnical obstacles blocking
firms from obtaining it. The pﬂ'xpacuvus Zmiven by these experienced users echosed many of the findings from the
Council's recently rele ased v or P rep " Accelerating Innowvati for Compe titive A : The

for HPC A pplication Softw are Solutions. ™

A, comparnson of the key findings from Parts A and B is found in the following chart. The findings reveal the need for
more aggressive use of HPC in A merican business and the cumrent plans ISVs have to meet these needs. The limitations
of HPC-specific ISV application software are not the only barmrier to fuller exploitation of HPC but are re gularly cited by
industrial end users as the most imMmpornant constraint

Stody Part A: Curremnt ISV Market Dynamics

* The business moddel for HPC- spe cific application software has all but evaporated in the last decade.

- ISV applications can exploit only a fraction of the probilem-solving power of today’s high- performance computers.

+ For many applications, the ISVs know how to improve scalability but have no plans to do so because the HPC
market is too small lnju-nfy the R&D investrment.

+ There is a lack of r ar ISV suppli for p

= Market forces alone will not address the zap I!l“an HPC users” needs and ISV software capabilities.

* PMost ISVs would be willing to parnner with outside partie s 1o accelerate applicarion softw are deve loprment.

Stody Fart B: HPC End Users" Perspectives

* HPC-specific ISV application software is indispensable for U.S. industrial competitiveness.

* WVirtnally all of the firms said they have larger problems that they can't solve t

=+ The lack of scalable application software is preventing many industrial users ﬁwn using HPC more aggressively
for compe titive advantage .

A NIS/2008 6:08 PM

The Need for Software Engineering

Outcomes of over 9000 sequential
development projects completed in 2004

missing 53%

Canceled
Completed
late, over B Unsuccessful
budget, W Successful
and/or with Canceled
Successful features

Source: [Hayes, Frank, “Chaos is Back,” Computerworld, November 8, 2004.]

Software engineering is needed to create an
environment for the development of quality parallel software
(reliable, predictable and maintainable)

Parallel Software Engineering

Process
Defined, Repeatable

Quality
Parallel
Software

Technology People
Eclipse Parallel Tools Platform, Technical and ProcessTraining,
Thread Analyzer, Thread Checker, Discipline

DDT, Totalview

Result : Predictable Cost, Schedule and Performance

Software Life Cycles

Sequential
Development Methodology

Requirements Analysis

Design

Implementation

Testing

Deployment

Parallel
Development Methodology

Requirements Analysis
Design

Sequential
Implementation

Code Profiling

Parallel Design

Parallel Implementation

Testing

Code Optimization
Tuning

Deployment

Patterns for Parallel Programs

Decomposing the problem to
exploit concurrency

Finding Concurrency

e Structuring the algorithm by tasks,
data decomposition or by flow of
data

Algorithm Structure

* Defining the shared data structures
that support algorithm
implementation

Supporting Structure

. . * Implementing management,
Implementation Mechanism communication and

synchronization

Source: [T. A. Mattson, B. Sanders and B. Massingill. Patterns for
Parallel Programming, 2004.]

Technology

Parallel Languages
— OpenMPI, OpenMP, UPC, POSIX, X10, Fortress, Chapel

Compilers
— Intel, Sun, Open64

IDEs

— Eclipse Parallel Tools Platform
Debugging Tools
— TotalView, DDT, Thread Checker, Thread Analyzer

Performance Tools
— PAPI, TAU

People

Understand standard/non-standard architectures
Learn parallel programming/bug patterns
Comprehend parallel language strengths/weaknesses
Learn the process and tools

Work within multi-disciplinary teams

Research Directions

Exploiting Nonstandard Architectures
— Cell Processors, GPGPUs, FPGAs, accelerators

Parallel Programming Models
— Extending existing languages C, C++, and Fortran

— New languages development: X10, Chapel, Fortress
— Hybrid code development (OpenMP/MPI)

Parallel Compilers
— Code optimization and auto-parallelization

Productivity Enhancing Tools
— IDEs, profiling, optimization and debugging tools

Resources

B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT
Press, 2008.

T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for
Parallel Programming. Addison-Wesley Professional, 2004.
cOMPunity, www.compunity.org

DoD HPCMO, www.hpcmo.hpc.mil

HPC Bug Base, www.hpcbugbase.org

HPC Tools Group, http://www2.cs.uh.edu/~hpctools/
OpenMP, www.openmp.org

OpenMPI, www.open-mpi.org

Summary

Parallel computing is all around youl!

Parallel programming introduces more complex software defects
that are hard to detect and debug

Parallel software performance requires attention to issues of
communications, synchronization, scalability and load balance

Better processes, tools and training are needed to improve the
practice and predictability of parallel software engineering

Software developers and acquisition personnel should be aware
of the opportunities and challenges of parallel software

For More Information

Lt Col Marcus W Hervey, USAF

AFIT/C

P

marcus.hervey@us.af.mil

www.marcushervey.com

Acronym List

C41SR — Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance

DDT — Distributed Debugging Tool

FPGA — Field Programmable Gate Array

GPGPU — General Purpose Graphics Processing Unit
HPC — High-Performance Computing

IDE — Integrated Development Environment

MPICH — Message Passing Interface Chameleon
OpenMP — Open Mulit-Processing

OpenMPIl — Open Message Passing Interface

PAPI — Performance Application Programming Interface
TAU — Tuning and Analysis Utilities

UPC — Unified Parallel C

